News

Tracking People via Bluetooth on Their Phones

We’ve always known that phones—and the people carrying them—can be uniquely identified from their Bluetooth signatures, and that we need security techniques to prevent that. This new research shows that that’s not enough.

Computer scientists at the University of California San Diego proved in a study published May 24 that minute imperfections in phones caused during manufacturing create a unique Bluetooth beacon, one that establishes a digital signature or fingerprint distinct from any other device. Though phones’ Bluetooth uses cryptographic technology that limits trackability, using a radio receiver, these distortions in the Bluetooth signal can be discerned to track individual devices…

Attacking the Performance of Machine Learning Systems

Interesting research: “Sponge Examples: Energy-Latency Attacks on Neural Networks“:

Abstract: The high energy costs of neural network training and inference led to the use of acceleration hardware such as GPUs and TPUs. While such devices enable us to train large-scale neural networks in datacenters and deploy them on edge devices, their designers’ focus so far is on average-case performance. In this work, we introduce a novel threat vector against neural networks whose energy consumption or decision latency are critical. We show how adversaries can exploit carefully-crafted sponge examples, which are inputs designed to maximise energy consumption and latency, to drive machine learning (ML) systems towards their worst-case performance. Sponge examples are, to our knowledge, the first denial-of-service attack against the ML components of such systems. We mount two variants of our sponge attack on a wide range of state-of-the-art neural network models, and find that language models are surprisingly vulnerable. Sponge examples frequently increase both latency and energy consumption of these models by a factor of 30×. Extensive experiments show that our new attack is effective across different hardware platforms (CPU, GPU and an ASIC simulator) on a wide range of different language tasks. On vision tasks, we show that sponge examples can be produced and a latency degradation observed, but the effect is less pronounced. To demonstrate the effectiveness of sponge examples in the real world, we mount an attack against Microsoft Azure’s translator and show an increase of response time from 1ms to 6s (6000×). We conclude by proposing a defense strategy: shifting the analysis of energy consumption in hardware from an average-case to a worst-case perspective…

M1 Chip Vulnerability

This is a new vulnerability against Apple’s M1 chip. Researchers say that it is unpatchable.

Researchers from MIT’s Computer Science and Artificial Intelligence Laboratory, however, have created a novel hardware attack, which combines memory corruption and speculative execution attacks to sidestep the security feature. The attack shows that pointer authentication can be defeated without leaving a trace, and as it utilizes a hardware mechanism, no software patch can fix it.

The attack, appropriately called “Pacman,” works by “guessing” a pointer authentication code (PAC), a cryptographic signature that confirms that an app hasn’t been maliciously altered. This is done using speculative execution—a technique used by modern computer processors to speed up performance by speculatively guessing various lines of computation—to leak PAC verification results, while a hardware side-channel reveals whether or not the guess was correct…

Microsoft Patch Tuesday, June 2022 Edition

Microsoft on Tuesday released software updates to fix 60 security vulnerabilities in its Windows operating systems and other software, including a zero-day flaw in all supported Microsoft Office versions on all flavors of Windows that’s seen active exploitation for at least two months now. On a lighter note, Microsoft is officially retiring its Internet Explorer (IE) web browser, which turns 27 years old this year.